C/AV for Agencies 101

Transportation Planning Considerations for Connected and Automated Vehicles

Connected & Automated Vehicle Workshop
Rancho Cordova, CA

presented by
Mark Jensen

January 17, 2018
Every week we hear a story in the news about connected vehicles, automated vehicles, or self-driving cars and how these vehicles will transform mobility in the United States.
Definitions

Automated Vehicle Technology

Source: Ricardo
While driving to work, Joshua Neally began to suffer severe chest pain. He had pre-programmed the nearest Emergency Room into Tesla's Autopilot software, and by selecting that location, the car navigated 20 miles of highway for him, and he was able to re-take control near the exit, and make it to the ER.

Source: Green Car Reports
Connected Vehicle Technology

Connected Vehicles (CVs): technology that provides driver assistance functions by using wireless communications with other vehicles and infrastructure to gather information about their environment.

Overview of CV technology
Development and Deployment of Connected Vehicle Technologies

Source: New York City DOT
Connected Vehicles: The 5G Option

3.6 Gbps for a 5G connected car moving at 170 Km/h
Don’t get caught up in choosing sides or thinking one way is better than another.

The Future will be Connected AND Automated (C/AV)
When the majority of the fleet is both connected and automated, there will be significant decreases in crashes, resulting in significant increases in safety and reliability.

Vehicle spacing on roadways will be safely reduced on a large scale.

Capacity Expansion Could Be a Thing of the Past
Example of C/AV Planning – CA Truck Platooning

Planning for the I-710 Dedicated Truck Lanes

- Project Lead: LA Metro & Gateway Cities COG
- Connected Corridor from ports to downtown LA
- ConOps and Corridor Plan
- 710 Corridor Simulation Modeling for C/AV Dedicated Truck Lanes
- Project list and long-term Implementation Plan
Mesosimulation: CV effects simulated using adjustments to saturation flows (capacity).

Different factors used depending on facility type and CV strategy being considered.
Many states have “Anti-Convoy” laws that preclude truck platooning.

California’s Anti-Caravanning Law requires a minimum spacing of 100 feet.

» Law was recently amended to allow for shorter headways for testing purposes only.

Source: Oshkosh Northwestern
What do we need to examine as we develop planning scenarios **today**...

about these vehicles of **tomorrow**.
Now is the time to start developing new forecasts based on these vehicles being in the fleet.
But there are conflicting predictions:

Some say VMT will go up...

Some say VMT will go down...

And some folks are now talking about VMD...

Tomorrow: VMT ≠ VMD
Phillip Rivers Example

Three days a week, for every week during the NFL season, Rivers "works" from the back seat while his driver delivers him from his home to the Chargers' facility in Costa Mesa.

"An hour and 18 minutes, which is nothing" - Rivers
And we need answers to several major questions:

How do we plan for MIXED vehicles in the mid-term?

What happens to TRANSIT?

How will LAND USE Change?

How do we need to UPDATE our modeling techniques to better capture the IMPACT of these VEHICLES?
And we must also take into account the emerging *Shared Economy*

By combining C/AV functionality with ride-sharing flexibility, you have the potential to radically change the way people use our transportation system.
How do we develop future C/AV Scenarios given all the uncertainty?
Robust Decision Making
C/AV Strategies Example

Robust Strategies for the Chicago Region for Automated Vehicles

- **Near-term (NT)**
 - Supportive policies for shared mobility
 - Advance existing ITS strategies into AV usage

- **Shaping (S)**
 - Pricing options for AV roadway use and parking in denser urban areas
 - Infrastructure to promote shared mobility, and continued investment in transit

- **Hedging (H)**
 - Hedge against VMT increases caused by AVs, by maintaining a dedicated ROW for shared vehicles

- **Deferred Adaptive (DA)**
 - Dynamic pricing to encourage capacity utilization
 - Integrating fleet of mid-size AV transit vehicles
Virginia AV Strategic Plan Example

- Formed stakeholder groups (internal and external) to address core functional areas
- Strategy-driven approach using RDM
- Engaging private sectors partners through workshop and charrette

Statewide AV Needs: Functional Areas

- Traffic Engineering and Operations
- Driver Licensing and Vehicle Registration
- Transportation Planning
- Data Management and System Security
- Capital Investment
- Vehicle Sales Oversight
- Vehicle Inspection and Commercial Vehicle Regulation
- Public Transportation
- Non-Motorized Transportation
- Research
- Vehicle to Infrastructure Technology Deployment
USDOT Primer on C/AV Impacts on Agency Planning Products and Processes

Connected Vehicle Impacts on Transportation Planning Primer

www.lts.dot.gov/index.htm
Final Report—June 2016
FHWA-JPO-16-420

Executive Summary ... 1
Introduction .. 3
Technology Summary ... 4
 CONNECTED VEHICLES .. 4
 AUTOMATED VEHICLES .. 5
 BENEFITS ... 6
 POTENTIAL APPLICATIONS .. 7
 KEY ISSUES FOR PLANNING ... 8
 RESOURCES AND RESEARCH .. 10
Impact Typology .. 12
 TYPOLOGY STRUCTURE ... 12
 IMPACTS .. 15
Case Studies ... 23
 1. TRANSPORTATION IMPROVEMENT PROGRAM 23
 2. INTELLIGENT TRANSPORTATION SYSTEMS ARCHITECTURE
 AND OPERATIONS PLAN .. 26
 3. BICYCLE AND PEDESTRIAN PLANNING 30
 4. LONG-RANGE METROPOLITAN TRANSPORTATION PLAN 33
 5. TRANSPORTATION ASSET MANAGEMENT PLAN 37
 6. STRATEGIC HIGHWAY SAFETY PLAN 41
 7. STATE IMPLEMENTATION PLAN 45
 8. TRANSIT DEVELOPMENT PLAN 47
 9. PUBLIC INVOLVEMENT PLAN 51
 10. FREIGHT PLAN .. 53
 11. FINANCIAL PLAN .. 57
Analytical Tools and Techniques ... 60
 SUMMARY OF EXISTING TOOLS, DATA, AND PRODUCTS 80
 EXPECTED IMPACTS OF CONNECTED VEHICLES 84
 EVALUATION AND COMPARISON OF EXISTING TOOLS 55
 GAP ANALYSIS FOR EXISTING TOOLS AND DATA 70
 ROADMAP FOR ADDRESSING GAPS 71
Workforce Skills and Training .. 74
 BENCHMARK EXISTING CONNECTED/AUTOMATED VEHICLE TRAINING
 PROGRAMS ... 74
 CONDUCT INTERVIEWS ... 75
 SYNTHESIS OF INTERVIEW FINDINGS 77
 RECOMMENDATIONS AND POTENTIAL STRATEGY 78

Conclusions: Some questions that must be addressed in C/AV Planning

- Will capacity improvements from CAV reduce need for physical expansion on major freeway corridors?
- What polices and regulations are needed to mitigate the potential for unforeseen consequences of new traveler behavior that could substantially increase VMT?
- Will roadway configurations have to change during the period of mixed fleet operation? (e.g. separation of automated and non-automated vehicles)
- Will AV replace or supplement some transit services?
Thank You!

Mark Jensen
Cambridge Systematics, Inc.
mjensen@camsys.com
805-474-8483