TRAFFIC RESPONSIVE SIGNAL COORDINATION IN SACRAMENTO COUNTY
WHO IS “BILL CROWL”?
(aka - William D. Crowl P.E. T.E.)
Associate Transportation Engineer
Sacramento County Department of Transportation (SACDOT)
Assigned to the Sacramento County Traffic Operations Center
BS Applied Science & Technology – Emphasis in Aviation
California Registered Professional Engineer - Electrical
California Registered Professional Traffic Engineer
TRAFFIC RESPONSIVE COORDINATED CORRIDORS (24X7)

Arden – 1 section – 5 signals – 9 patterns
Bradshaw – 1 section – 5 signals – 2 patterns
Calvine – 1 section – 6 signals – 9 patterns
Elk Grove Florin – 1 section – 4 signals – 9 patterns
Fair Oaks – 1 section – 11 signals – 15 patterns
Florin – 1 section – 10 signals – 6 patterns
Fulton – 1 section – 4 signals – 15 patterns
Hazel – 1 section – 7 signals – 5 patterns
Howe – 1 section – 9 signals – 9 patterns
Watt – 4 sections – 33 signals – 25 patterns
SOME DEFINITIONS

• TRAFFIC ACTUATED (Behavior Accommodating) – A single signal operating independently in accordance with the status of local vehicle detection to achieve a point location oriented mobility goal.

• TRAFFIC RESPONSIVE (Behavior Accommodating) – A “team” of signals operating together (two axis data responsive signal control) in accordance with wide area vehicle detection to achieve a corridor oriented mobility goal.

• TRAFFIC ADAPTIVE (Route Perceptive – Behavior Accommodating) – A “team” of signals operating together (three axis data responsive wide-area signal control) in accordance with wide area vehicle detection to achieve a grid oriented mobility goal. (Outside of today’s presentation scope.)
TIME OF DAY OPERATING MODES

• FREE (in the overnight)
• Coordination (Y/N ? – per schedule)
• Variable Cycle Length (per schedule)
• Compromise Offset (per schedule)
• Holiday Exception Days (pre-programmed)
TRAFFIC RESPONSIVE OPERATING MODES

• FREE (whenever feasible)
• Coordination (based upon demand)
• Variable Cycle Length (road data driven)
• Variable Offset (road data driven)
<table>
<thead>
<tr>
<th></th>
<th>S/B or W/B</th>
<th>Semi S/B or W/B</th>
<th>Bi-Directional</th>
<th>Semi N/B or E/B</th>
<th>N/B or E/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>151</td>
<td>152</td>
<td>153</td>
<td>154</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>142</td>
<td>143</td>
<td>144</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>132</td>
<td>133</td>
<td>134</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>122</td>
<td>123</td>
<td>124</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td>115</td>
<td></td>
</tr>
</tbody>
</table>

150 sec C/L
140 sec C/L
130 sec C/L
120 sec C/L
110 sec C/L
CLOSED LOOP CONTROL SYSTEM CONCEPTS

Stability (computer output vs system reaction)

• If “X”, Then “Y” (“Y” had better address “X” or else…)
• Computer input data as it relates to traffic (Volume – Occupancy)
• Mathematical correlation between data and intent (the purpose of “k” in V+kO)
• Free Stream vs Signalized - V and O data (why and how of V+kO)
Effect of "k" in V+kO (k=1)
Effect of "k" in V+kO (k=900)
“TRANSITION” MITIGATION

• Underlying Traffic Pattern Design (stable platform)
• Signal Controller (coordinator) Programming
• Algorithm Definition (constraints)
• Algorithm “Tuning” (stability - S/N ratio)
• Long term monitoring
DISASTER PLANNING

• Controller clocks constantly updated by central system
• Backup TBC/TOD resides on-board at the controller
• Backup TBC replicates (simplified) TR performance
• Long-term plan to maintain controller clocks
• Technician training regarding “clock hygiene”
SUMMARY

TRAFFIC RESPONSIVE SIGNAL COORDINATION IS;

• Attainable
• Sustainable
• Available
• Efficient
OPEN DISCUSSION

• Questions?
• Comments….
• Criticism!
• Complaints!